Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
BioChem ; 1(3):250-278, 2021.
Article in English | MDPI | ID: covidwho-1542408

ABSTRACT

The urgent need to fight the COVID-19 pandemic has impressively stimulated the efforts of the international scientific community, providing an extraordinary wealth of studies. After the sequence of the virus became available in early January 2020, safe and effective vaccines were developed in a time frame much shorter than everybody expected. However, additional studies are required since viral mutations have the potential of facilitating viral transmission, thus reducing the efficacy of developed vaccines. Therefore, improving the current laboratory testing methods and developing new rapid and reliable diagnostic approaches might be useful in managing contact tracing in the fight against both the original SARS-CoV-2 strain and the new, potentially fast-spreading CoV-2 variants. Mass Spectrometry (MS)-based testing methods are being explored, with the challenging promise to overcome the many limitations arising from currently used laboratory testing assays. More specifically, MALDI-MS, since its advent in the mid 1980s, has demonstrated without any doubt the great potential to overcome many unresolved analytical challenges, becoming an effective proteomic tool in several applications, including pathogen identification. With the aim of highlighting the challenges and opportunities that derive from MALDI-based approaches for the detection of SARS-CoV-2 and its variants, we extensively examined the most promising proofs of concept for MALDI studies related to the COVID-19 outbreak.

2.
Int J Mol Sci ; 22(2)2021 Jan 07.
Article in English | MEDLINE | ID: covidwho-1016184

ABSTRACT

Protein-protein interactions (PPIs) are the vital engine of cellular machinery. After virus entry in host cells the global organization of the viral life cycle is strongly regulated by the formation of virus-host protein interactions. With the advent of high-throughput -omics platforms, the mirage to obtain a "high resolution" view of virus-host interactions has come true. In fact, the rapidly expanding approaches of mass spectrometry (MS)-based proteomics in the study of PPIs provide efficient tools to identify a significant number of potential drug targets. Generation of PPIs maps by affinity purification-MS and by the more recent proximity labeling-MS may help to uncover cellular processes hijacked and/or altered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), providing promising therapeutic targets. The possibility to further validate putative key targets from high-confidence interactions between viral bait and host protein through follow-up MS-based multi-omics experiments offers an unprecedented opportunity in the drug discovery pipeline. In particular, drug repurposing, making use of already existing approved drugs directly targeting these identified and validated host interactors, might shorten the time and reduce the costs in comparison to the traditional drug discovery process. This route might be promising for finding effective antiviral therapeutic options providing a turning point in the fight against the coronavirus disease-2019 (COVID-19) outbreak.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Protein Interaction Maps , SARS-CoV-2/metabolism , Virus Internalization/drug effects , A549 Cells , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Cell Line , Drug Repositioning , HEK293 Cells , Humans , Mass Spectrometry , Protein Interaction Mapping , SARS-CoV-2/drug effects , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL